AIRO2023

BOLOGNA, 27-29 OTTOBRE 2023

PALAZZO DEI CONGRESSI

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

STEREOTACTIC BODY RADIOTHERAPY AND ARTIFICIAL INTELLIGENCE IN OLIGOMETASTATIC GYNAECOLOGIC CANCER: A LARGE, REAL-WORLD STUDY ON RESPONSE PREDICTION, EFFICACY AND OUTCOMES

> Gabriella Macchia Responsible Research Hospital Campobasso

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

No conflict of interest

Review

¹Radiation Oncology, Duke Cancer Institute, Durham, North Carolina, USA ²Gynecologic Oncology, Duke Cancer Institute, Durham, North Carolina, USA

Role of stereotactic body radiotherapy in gynecologic radiation oncology

Conclusion and Future Directions

- SBRT active area of investigation
- a body of literature supports local control data in the setting of limited metastatic disease
- phase I and II trials have established the relative safety
- a dearth of phase III randomized evidence, including the use of immunotherapy

449 lesioni, 19 centri

Radiation Oncology

Oncologist[®] 2020; 25(2):e311-e320.

A Large, Multicenter, Retrospective Study on Efficacy and Safety Of Stereotactic Body Radiotherapy (SBRT) in Oligometastatic Ovarian Cancer (MITO RT1 Study): A Collaboration of MITO, AIRO GYN, and MaNGO Groups

Gabriella Macchia 🗭,^{a,†} Roberta Lazzari,^{b,†} Nicoletta Colombo,^c Concetta Laliscia,^d Giovanni Capelli,^o Giuseppe Roberto D'Agostino,^f Francesco Deodato,^a Ernesto Maranzano,^g Edv Ippolito,^h Sara Ronchi,^d Fabiola Palar,^g Marta Scorsetti,^{f,d} Savino Cilla,^j Rossana Ingargiola,^{b,k} Alessandra Huseher,^j Anna Maria Cerrotta,^m Andrei Fodor,ⁿ Lisa Vicenzi,^o Donatella Russo,^p Simona Borghesi,^g Elisabetta Perrucci, ^r Sando Pignata,^s Cynthia Aristej, ^r Alesdo Giuseppe Morganti, ^t Giovanni Scambia,^{u,v} Vincenzo Valentina,^{b,t,w} Barbara Alica Jerczek-Fossa,^{b,k, t†} Gabriella Ferrandina^{u,v,††}

Multicenter Study > Int J Gynecol Cancer. 2022 Jun 6;32(6):732-739.

doi: 10.1136/ijgc-2021-003237.

125 lesioni, 15 centri

Stereotactic body radiotherapy in oligometastatic cervical cancer (MITO-RT2/RAD study): a collaboration of MITO, AIRO GYN, and MaNGO groups

Gabriella Macchia ¹, Alessia Nardangeli ², Concetta Laliscia ³, Andrei Fodor ⁴, Lorena Draghini ⁵, Pier Carlo Gentile ⁶, Giuseppe Roberto D'Agostino ⁷, Vittoria Balcet ⁸, Paolo Bonome ⁹, Martina Ferioli ¹⁰, Rosa Autorino ², Lisa Vicenzi ¹¹, Arcangela Raguso ¹², Simona Borghesi ¹³, Edy Ippolito ¹⁴, Vanessa Di Cataldo ¹⁵, Savino Cilla ¹⁶, Elisabetta Perrucci ¹⁷, Maura Campitelli ², Maria Antonietta Gambacorta ¹⁸ ¹⁹, Francesco Deodato ⁹ ¹⁹, Giovanni Scambia ²⁰, Gabriella Ferrandina ²⁰

> Int J Radiat Oncol Biol Phys. 2023 May 5;S0360-3016(23)00417-0. doi: 10.1016/j.ijrobp.2023.04.025. Online ahead of print.

272 lesioni, 14 centri

EFFICACY AND SAFETY OF STEREOTACTIC BODY RADIOTHERAPY (SBRT) IN OLIGOMETASTATIC UTERINE CANCER (MITO-RT2/RAD STUDY): A LARGE, REAL-WORLD STUDY IN COLLABORATION WITH AIRO GYN, MITO and MaNGO Groups

Gabriella Macchia ¹, Donato Pezzulla ², Maura Campitelli ³, Concetta Laliscia ⁴, Andrei Fodor ⁵, Paolo Bonome ², Lorena Draghini ⁶, Edy Ippolito ⁷, Vitaliana DE Sanctis ⁸, Martina Ferioli ⁹, Francesca Titone ¹⁰, Vittoria Balcet ¹¹, Vanessa DI Cataldo ¹², Donatella Russo ¹³, Lisa Vicenzi ¹⁴, Sabrina Cossa ¹⁵, Simona Lucci ³, Savino Cilla ¹⁶, Francesco Deodato ¹⁷, Maria Antonietta Gambacorta ¹⁸, Giovanni Scambia ¹⁹, Alessio Giuseppe Morganti ⁹, Gabriella Ferrandina ¹⁹

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Artificial Intelligence In Medicine 139 (2023) 102536

Contents lists available at ScienceDirect

Artificial Intelligence In Medicine

Gynecological cancer prognosis using machine learning techniques: A systematic review of the last three decades (1990–2022)

Joshua Sheehy^a, Hamish Rutledge^a, U. Rajendra Acharya^b, Hui Wen Loh^c, Raj Gururajan^d, Xiaohui Tao^e, Xujuan Zhou^e, Yuefeng Li^f, Tiana Gurney^a, Srinivas Kondalsamy-Chennakesavan^{a,*}

<u>Results</u>

validated. Twenty-three individual studies compared ML and non-ML methods. Study quality was highly variable and methodologies, statistical reporting and outcome measures were inconsistent, preventing generalized commentary or meta-analysis of performance outcomes.

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Background

No accurate prediction models for clinical outcomes of gynaecologic oligometastatic cancer treated with SBRT exist

Nor is it clear if attaining a complete response (CR) following SBRT influences oncologic outcomes

AIM

- a pooled analysis of a large real-world multicentric dataset of ovarian, uterine and cervical oligometastatic lesions treated with SBRT in terms of efficacy and clinical outcomes
- in addition, an **exploratory machine learning analysis** able to identify the covariates able to predict the complete response after SBRT

AIRO2023

Radioterapia Oncologica: 'evoluzione al servizio dei pazienti

Hystology		ос	UC	cc	All
Number of patients		261	157	83	501
Median age, yrs (range)		60 (28-85)	69.7 (36-90.5)	58 (30-92)	63 (28-92)
ECOG	0	111	111	56	357
	1	40	40	22	91
	2	6	6	4	48
	3	0	0	1	5
Comorbidities per patient	None	42	42	42	238
	1	45	45	21	144
	2	34	34	9	73
	3	16	16	5	27
	4	7	7	3	12
	>5	6	6	3	10
	n.a.	6	6	0	6
Patients undergoing surgen	no	7	7	27	37
before SBRT	yes	150	150	56	459
	n.a.	0	0	0	5
Patients undergoing chemotherapy before SBRT	no	42	42	21	63
	yes	110	110	61	427
	n.a.	5	5	1	6
Patients undergoing previous in site radiotherapy	no	91	91	55	393
	yes	25	25	28	62
	n.a.	0	0	0	5

Abbreviations: yrs: years; OC: ovarian cancer; UC: uterine cancer; CC: cervical cancer; ECOG: Eastern Cooperative Oncology Group performance status; n.a.: not available; SBRT: stereotactic body radiotherapy

.

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

					ALL
GTV (range)	4.5 (0.04-68.4)	4 (0.05-181.1)	4.3 (0.2-105.1)	4 (0.04-181)
PTV (I	range)	17.9 (0.4-136.4)	13.7 (2-196.5)	15.7 (1.8-278.5)	16 (0.4-278.5)
Equipment	LINAC	401	115	223	739
	Ciberknife	34	10	44	88
	Tomotherapy	11	1	5	17
	Gammaknife	3	0	0	3
Techniques	VMAT	434	104	165	703
	IMRT	5	20	93	118
	3DCRT	8	1	14	23
	n.a.	0	0	0	0
Referral dose	Specific isodose	235	48	120	403
	Isocenter	159	31	88	278
	Target mean	55	46	64	165
Median Tota	l dose (range)	25 (5-75)	35 (10-75.2)	35 (10-60)	30 (5-75.2)
Median n fraction:	number of s (range)	4 (1-13)	5 (1-10)	5 (1-10)	5 (1-13)
Median BED10 (range)		50.7(7.5-262.5)	59.5 (20-156.1)	59.5 (15-151.2)	51 (7.5-262.5)
A la la manufactura a com	C	11 Constraints and a second second of	Contract and the second second	CDV	

Abbreviations: OC: ovarian cancer; UC: uterine cancer; CC: cervical cancer; GTV, gross tumor volume; PTV,

Efficacy

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Overall series			
CR	538 (63.7%)		
PR	189 (22.3%)		
SD	80 (9.5%)		
PD	38 lesions (4.5%)		

Objective response rate (CR+PR): 85.9%

Clinical benefit (CR+PR+SD): 91.8%

OC CR rate of 65.2%,

CC CR rate of 58.4%

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Variables selection and modelling

Least Absolute Shrinkage and Selection Operator (LASSO) method's application to all series → poor ability to forecast CR

Analysis of the 3 malignancies separately

3 covariates predicted CR for ovarian or uterin lesion (LASSO coefficent not zero)

No covariates predictive for CR in cervical cancer lesions

Oligometastatic/persistent/recurrent gynecologic lesion

Clinical Outcomes 1

The overall 2-year actuarial local control rate: 79.2%

Median follow-up was 125 months (range: 1-316 months)

Clinical Outcomes 2

The overall 2-year actuarial PFS rate: 27.3%

Clinical Outcomes 3

The overall 2-year actuarial OS rate: 84.7%

AIRO2023

Key points

- **21 radiation therapy centres have combined their data on 846 lesions from 501 patients** in an effort to identify complete response predictors and to strengthen the role of SBRT in the GYN setting
- The achievement of **complete response** acts as a **major driver**
- SBRT gave a high and long-lasting Local Control rate (2-year rate: 79.2%)
- A robust and consistent CART model employing 4 clinical variables, which may lead oncologists via the rising chance of CR
- For **OC** lesions, **the type of lesion (lymph node or parenchyma)** was the most important variable, whereas for UC lesions, the BED₁₀ was the most important one.
- the **likelihood of receiving a complete response increases with decreasing volume** for both the ovarian and the uterine lesions. The size of the lesion offers for the radio-oncologist another degree of freedom on which he can partially infer
- For the setting of cervical cancer, however, it was not possible to identify any variables that were sufficiently predictive to create a model. The lack of some input factors, such as the HPV status or other genetic/ epigenetic variables able to better determine the core biology of the disease, or the minimal number of inputs might be the cause of this failure

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Limits and strength

- the <u>retrospective</u> nature of the data.
- This ML model is based on a <u>modest</u> number of clinical and dosimetric parameters → other <u>variables</u> with potential influence on outcome prediction may be <u>overlooked</u>.
- The model was developed utilizing <u>readily available data</u>, which did <u>not necessitate</u> <u>costly and time-consuming data processing</u> (as in radiomics or genomics), resulting in <u>more basic and understandable model</u> that was also accurate. The low number of input variables should be viewed as a gain because such models will be less likely to overfit and easier to understand

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Conclusions

- every effort must be made to obtain a complete response because seems to affects the outcomes
- the capacity to forecast it using artificial intelligence is critical in **boosting the** chance of SBRT effectiveness and driving treatment choices
- Further prospective studies to define <u>doses</u>, <u>fractionations and volumes</u> are needed, as well studies on the combination of SBRT with radiotherapy <u>sensitizer</u>, <u>targeted drugs and immunotherapy</u>.

